Morphological Embeddings for Named Entity Recognition in Morphologically Rich Languages

نویسندگان

  • Onur Güngör
  • Eray Yildiz
  • Suzan Uskudarli
  • Tunga Güngör
چکیده

In this work, we present new state-ofthe-art results of 93.59% and 79.59% for Turkish and Czech named entity recognition based on the model of (Lample et al., 2016). We contribute by proposing several schemes for representing the morphological analysis of a word in the context of named entity recognition. We show that a concatenation of this representation with the word and character embeddings improves the performance. The effect of these representation schemes on the tagging performance is also investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings

Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervise...

متن کامل

Learning-Based Named Entity Recognition for Morphologically-Rich, Resource-Scarce Languages

Named entity recognition for morphologically rich, case-insensitive languages, including the majority of semitic languages, Iranian languages, and Indian languages, is inherently more difficult than its English counterpart. Worse still, progress on machine learning approaches to named entity recognition for many of these languages is currently hampered by the scarcity of annotated data and the ...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

A Syllable-based Technique for Word Embeddings of Korean Words

Word embedding has become a fundamental component to many NLP tasks such as named entity recognition and machine translation. However, popular models that learn such embeddings are unaware of the morphology of words, so it is not directly applicable to highly agglutinative languages such as Korean. We propose a syllable-based learning model for Korean using a convolutional neural network, in wh...

متن کامل

تشخیص اسامی اشخاص با استفاده از تزریق کلمه‌های نامزد اسم در میدان‌های تصادفی شرطی برای زبان عربی

Named Entity Recognition and Extraction are very important tasks for discovering proper names including persons, locations, date, and time, inside electronic textual resources. Accurate named entity recognition system is an essential utility to resolve fundamental problems in question answering systems, summary extraction, information retrieval and extraction, machine translation, video interpr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.00506  شماره 

صفحات  -

تاریخ انتشار 2017